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Abstract—Displacement boundary problems are considered for the homogeneous isotropic elastic half-plane
with random Poisson’s ratio v. Probability densities, expected values and variances of the displacement field
u, v are determined and evaluated for uniform probability distribution of v. As an example the effect of a discon-
tinuity of the boundary vertical displacement v, = v4(x, 0) is determined and used to obtain the settlement of the
earth surface under a coal excavation.

1. INTRODUCTION

THE mechanical behavior of a homogeneous, isotropic and linear—elastic solid is described
by the moduli of elasticity such as Young’s modulus E, Kirchhoff’s modulus G, bulk
modulus K and Poisson’s ratio v. The classical methods to determine these moduli are
based on tensile or compression tests with simultaneous measurement of longitudinal and
transverse deformations. These tests provide direct determination of Young’s modulus and
Poisson’s ratio. From test results E, G, K and v are calculated usually as deterministic
quantities by using some kind of arithmetical mean value. In many instances this may
provide an adequate description. In other cases, however, this will not give sufficient in-
formation. Since the results are, in fact, varying randomly the elastic moduli should be
treated as random quantities.

Frequently, e.g. from rock tests, Young’s modulus is obtained as a constant (or its small
variation may be neglected), whereas Poisson’s ratio is a random variable varying in the
interval [0, 3]. In this paper the influence of the randomness of v on the displacements of an
elastic half-plane under displacement boundary conditions is considered. The problem is
formulated to explain certain phenomena in geology and rock mechanics [1, 3, 5].

2. DISPLACEMENTS IN THE ELASTIC HALF-PLANE

The displacement field u,v in the elastic half-plane under displacement boundary
conditions can be described in the form [1, 2]
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where V' stands for the generalized Poisson’s ratio (' = v or v' = v/(1 +v) in plane strain or
plane stress, respectively) and U, V denote the Fourier transforms of the boundary dis-
placements u, = u(x, 0), v4 = v(x, 0),

U= f uge'*dx, V= f ' vg €% dx. 2.2)
Letting u; = (u,v), U, = (U, V), the displacements may be written in the form,
plain strain
1
= A, +B, —— = 2.7
ul i + Bu; 3 . 4" gug(v)’ ( 3}
plane stress
I+v
U, = A“'.‘F‘Busg‘: = gu,.(V}, (24)
where
1= e
Aui = —M'J‘ Ufe“‘é]}"lsxdé’
2ng_
Bo= | wv-gue 25)
2nd. .,

Bo= o[ EUHEye e
2nJ

are deterministic quantities.
Let the probability density p(v) of Poisson’s ratio v be given. Then the corresponding
densities of the random displacements are obtained as [4]

pivy)
lg' (v ’

glu;) = (2.6)
where g(v) = g,,(v) represents the functions in equations (2.3), (2.4) g'(v) = dg(v)/dv, and vy,
depending on u;, is the (real) root of u; = g(v).

Thus, one obtains for the densities,
plane strain

|BI 3 B
qlu;) = T p(z—“z(l;':'g)‘), (2.7)
plane stress
. 4|B| 3u,—34—B
q(ui)—(ui—A+B)2' ( w—A+B ) 28

when A, B are to be read as A, B, respectively.
The expected value (mean) m of the displacements and the variance o7,

mz@»=jxmwmwb
o . (2.9)
#s<m—m5:f (= m)q(u) g,



The influence of random Poisson’s ratio on displacements in an elastic half-plane 917

may be found directly in terms of the density p(v) of v, since

a0

m = (gv) = f  opo

(2.10)
o2 = (u?>—m?.

Assuming now that v is uniformly distributed in the interval [a, bla<bh0<ab<i,

1/h— fora<v<hb
(v)={/i 4 (2.11)
zero elsewhere,
one obtains the densities,
plane strain
|Bl B B
)= e — S S Ad—— 2.12
W) = g —dp T ATt AT g (2.12)
and zero elsewhere,
plane stress
48| l+a 1+5b
) = forA+B—Su, S A+B—— 2.13
W) = g arpr OTATET s ATE @13)

and zero elsewhere. The upper and lower signs correspond to B > 0, B < 0, respectively.
Expected values and variances are obtained as,
plane strain

B 3—4b
(upy = A—-4(b_a) In [m3~4a ,
(2.14)
2 _ g 1 L a3
T = PG da(3=4b) 16b—ar " |3—4a
plane stress
4 3—-b
<”i> = A“B{1+(F:~a—-iln ‘4—3—‘61 },
(2.15)

, , L
w = 168 {(3-a)(3»b) b—a? " }

The densities as derived above provide sufficient information in many applications, For
instance, the probability that the displacement u; will lie between two limits {,, {,, is

3-b
3—a

2

{2
PlLi << G} = [ g du .16)
4}
The inverse problem, where the probability P is prescribed and the corresponding bounds
{1, {y are to be determined can, in general, only be solved numerically.
In a similar manner as above the statistical properties of the stresses can be calculated.
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3. DISPLACEMENT FIELD IN THE NEIGHBORHOOD
OF A VERTICAL FAULTY

Let the boundary displacements of the half-plane (y > 0) be

Uy =0 for —x < x < x,

{'ho for x > 0,
By =

0 forx<O. (1)

iny =20
This represents a boundary in the form of a vertical fault. The Fourier transforms of the
boundary displacements become [3]

U=0, V=—h E+né{§)}, (3.2)
[

where () is Dirac’s delta function.
The displacements u, v in a neighborhood of the fault are (v is independent of x, y) from
equations (2.1), [3],

ho vy
PR ST AN
3—-4v) x?+ 7
{ ) y (3.3)
o1 1 Xy
v= —h {2+ arctan — + 2B —4v) X2 +y2}’

y >0
Now let v be a random variable {independent of x,y) distributed according to
equation {2.11). After calculating the deterministic parts, equations (2.5), y > 0,

} 2
4,=0, B,==2—r
n x? +y
(3.4
1 ho Xy
—-ho( + - arctan») B, = oy +V

one obtains for the expected values and variances, equations (2.14), (2.15), respectively,
plane strain

ho 3-4b) y?
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plane stress

h, 4 3-b) ¥
<u>— ~;{1+(b—a)ln’3_a}x2+y2’
1.1 x 1 4 3-bl1 xy
= - e b 1
{v) ho%’2+narctany [+(b a)n - a|:| =z +y}
(3.6)
O ,[3-b
Tu 2\3=a)3-b) (b-a}  |3-a|{( +y
h3 1 1 ,[3-0b x%y
2 =162 — In?
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Consider as an example the deformation of the earth surface due to a coal excavation,
when Poisson’s ratio v is uniformly distributed in the interval [0, ]. Assume the excavation
of large width L,, and length L to be situated at the large depth H. As a model for the
calculation of the displacements one may in this case use a half-plane under boundary
displacements equation (3.1) and assume plane strain, v' = v, [5].

Then, with a = 0, b = 4, equations (3.5), yield

hy y2
=1n32
G =ln 2n x2+)? +y*’
11 In3  xy
{v) = {2+ arctany+ Xty }
3.7

2= Moy 3123)_4—— e

u 127 2 ( +y2)2’

h2 x2y2
2 __ "0 - 2
g, = 12n2(4 3In 3)(x2+y2)2'

For comparison the displacements in this case are also calculated in the usual way,
with Poisson’s ratio taken deterministically as arithmetical mean value, v = 025, equations
(3.3),

hy ¥
2n x*+y*’

1 1
= —ho{ +—arctan — + xy }
2n x2+y?

ud=

(3.8)

Thus, the difference between expected value and deterministic mean is for the horizontal
displacement

h y? h y?
—u,=(In3-1)=2—7 _ - 009861-2 — 7
Cwy—uy = (In3~1)3" - -2 861 — L (3.9)

corresponding to a relative error of about 10%, ie. the displacement u, which has to be
expected, is about 109 larger than its “deterministic” value. This is of importance when
there is an upper bound restriction on the horizontal displacements.
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For the vertical displacements one obtains

) h xy
D=ty = —(n3-1)5 5 = 0098612
)=, (In )Zn x? 4 y? 0 86127r x% 4 y? (3101

For x = y there is a maximum difference of about 0-01 h,. Here, in many cases the deter-
ministic calculation will give sufficient results. The last equation shows, for y = H = const,
the approximate error in the determination of the settlement surface.
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AGcTpakT—PaccMaTpuBalOTCs I'DAHKMMYHBIE 3a0a4d B TEPEMELUEHHAX I8 OQHOPOAHOH M30TPOTHON
YAPYro# MOJMYIUIOCKOCTH, ¢ TPOU3BOJBHO BuIOpanHbiM ko3dduumentom [lyaccona ». OnpenenstoTes u
OLEHYBAIOTCH IUIOTHOCTH BEPOATHOCTH, OXHIAEMBIE 3HAYEHUS M M3IMEHEHMs TIONs TiepeMelueHHit u, v
IJIS OIHOPOMIHOTO PachpeaereHyst BEpOATHOCTH v. B xavecTse Nnpumepa ompenesseTcs 3bdekT pa3pbisa
Ha TPaHUUE BEPTUKANBHOTO NEPEMELLIEHHS Vg == Uo(x, #). Janee UCTIoNib3yeTCs ero UK MONYyYEHUst OCENaHuA
IHEBHOM MOBEPXHOCTH MOJ BIMAHUEM BbIPAaOOTKH yIjif.



